Name:			
Instruct	or:		

Math 10550, Exam III November 27, 2007

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- \bullet The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.

PLE	ASE MA	RK YOUR ANS	WERS WIT	'H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Total	

Instructor:

Multiple Choice

1.(7 pts.) Solving the equation $x^2 - 2 + \cos(\frac{\pi x}{2}) = 0$ using Newton's method with initial approximation $x_1 = 1$, what is x_2 ?

- (a) $x_2 = \frac{1}{2}$
 - (b) $x_2 = 1$ (c) $x_2 = \pi$

- (d) $x_2 = \frac{\pi}{2} 1$ (e) $x_2 = \frac{6 \pi}{4 \pi}$

2.(7 pts.) The area of an ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

of semi-axis a and b is known to be πab . Use this (or some other geometric fact) to evaluate the integral

$$\int_{-a}^{a} \frac{b}{a} \sqrt{a^2 - x^2} dx$$

- (a) $\pi a^2 b^2$ (b) $\pi a b^2$ (c) $\sqrt{\pi} a b$ (d) $2\pi a^2 b$ (e) $\frac{1}{2}\pi a b$

Name:

Instructor:

3.(7 pts.) Calculate the indefinite integral

$$\int \frac{3x + 3\sqrt{x}}{\sqrt{x}} dx =$$

- (a) $3x^2 + C$ (b) $3x^{3/2} + C$ (c) $3x + 2x^{3/2} + C$ (d) $x + \sqrt{x} + C$ (e) $x^{3/2} + C$

4.(7 pts.) Calculate the definite integral

$$\int_0^\pi |\cos x| dx =$$

(a)

(b) π

(c) 1

(d) 2 (e) 2π

Name: Instructor:

5.(7 pts.) Calculate

$$\int 6\tan^5 x \sec^2 x dx =$$

- (a)
- $\tan x \sec x + C$ (b) $\sec^6 x + C$
- (c) $\tan^5 x + C$

- (d) $\tan^6 x + C$
- (e) $\sec^4 x + C$

6.(7 pts.) Which of the following estimate holds for the integral

$$I = \int_0^1 (1 + \cos^2 x) dx?$$

- (a) $0 \le I < \frac{\pi}{6}$
- (b) $1 \le I \le 2$ (c) $2 < I \le 3$
- (d) $I \le 1 + \cos^2 1$ (e) 0 < I < 1

Name: Instructor:

7.(7 pts.) Find the volume of the solid obtained by rotating the region bounded by $y = x^6$, y = 1, and x = 0, about the y - axis.

- (a) 3π
- (b) $\frac{4\pi}{3}$ (c) $\frac{3\pi}{4}$ (d) 4π (e) $\frac{\pi}{4}$

8.(7 pts.) Consider the function

$$g(x) = -\int_{\sin x}^{0} \sqrt{t^3 + 1} dt.$$

Then g'(x) =

- (a) $\sqrt{\sin^3 x + 1} \cos x$ (b) $(\sin^3 x + 1) \cos x$ (c) $3(\sin^2 x) \sqrt{\sin^3 x + 1}$
- (d) $\sin^3 x \cos x$
- (e) $\sqrt{\sin^3 x + 1}$

Name: _____

Instructor:

9.(7 pts.) Calculate the integral

$$\int_{-2}^{2} \frac{x^3}{1 + \cos^2 x} dx.$$

(a)

(c) 0

(d) 16

(e)

10.(7 pts.) Which of the following is a Riemann sum corresponding to the integral

$$\int_{1}^{2} \sin x \ dx?$$

- (a) $\frac{2}{n} \sum_{i=1}^{n} \sin(1 + \frac{i}{n})$ (b) $\frac{1}{n} \sum_{i=1}^{n} \sin(1 + \frac{i}{n})$ (c) $\frac{1}{n} \sum_{i=1}^{n} \sin(\frac{2i}{n})$
- (d) $\frac{1}{n} \sum_{i=1}^{n} \sin(1 + \frac{2i}{n})$ (e) $\frac{2}{n} \sum_{i=1}^{n} \sin(\frac{2i}{n})$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(10 pts.) Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and the vertical lines x = 0, $x = \frac{\pi}{2}$.

Name:	
Instructor:	

12.(10 pts.) Find the coordinates of the point on the line x + y + 1 = 0 that is closest to the origin. Hint: the computations are a bit easier if you minimize the <u>square</u> of the distance to the origin.

Name:	
Instructor:	

13.(10 pts.) A cylindrical can without a top is made to contain π cubic centimeters of liquid. Find the dimensions (height and radius of the cylinder) that will minimize the cost of the metal to make the can.

Name:		
Instructor:	ANSWERS	

Math 10550, Exam III November 27, 2007

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- \bullet The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.

PLE	ASE MARK	YOUR ANSW	ERS WITH A	N X, not a circ	cle!
1.	(a)	(b)	(c)	(d)	(●)
2.	(a)	(b)	(c)	(d)	(•)
3.	(a)	(b)	(●)	(d)	(e)
4.	(a)	(b)	(c)	(•)	(e)
5.	(a)	(b)	(c)	(●)	(e)
6.	(a)	(•)	(c)	(d)	(e)
7.	(a)	(b)	(●)	(d)	(e)
8.	(•)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(ullet)	(d)	(e)
10.	(a)	(●)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Total	